Asynchronous Transfer Mode (ATM) is a standardized digital data transmission technology. ATM is implemented as a network protocol and was first developed in the mid 1980s.
Asynchronous Transfer Mode is a cell-based switching technique that uses asynchronous time division multiplexing.
It encodes data into small fixed-sized cells (cell relay) and provides data link layer services that run over OSI Layer 1 physical links. This differs from other technologies based on packet-switched networks (such as the Internet Protocol or Ethernet), in which variable sized packets (known as frames when referencing Layer 2) are used. ATM exposes properties from both circuit switched and small packet switched networking, making it suitable for wide area data networking as well as real-time media transport.
ATM uses a connection-oriented model and establishes a virtual circuit between two endpoints before the actual data exchange begins.
ATM has proven very successful in the WAN scenario and numerous telecommunication providers have implemented ATM in their wide-area network cores. Many ADSL implementations also use ATM. However, ATM has failed to gain wide use as a LAN technology, and lack of development has held back its full deployment as the single integrating network technology in the way that its inventors originally intended. Since there will always be both brand-new and obsolescent link-layer technologies, particularly in the LAN area, not all of them will fit neatly into the synchronous optical networking model for which ATM was designed. Therefore, a protocol is needed to provide a unifying layer over both ATM and non-ATM link layers, as ATM itself cannot fill that role. IP already does that; therefore, there is often no point in implementing ATM at the network layer.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment